81 research outputs found

    Robust Algorithms for Unattended Monitoring of Cardiovascular Health

    Get PDF
    Cardiovascular disease is the leading cause of death in the United States. Tracking daily changes in one’s cardiovascular health can be critical in diagnosing and managing cardiovascular disease, such as heart failure and hypertension. A toilet seat is the ideal device for monitoring parameters relating to a subject’s cardiac health in his or her home, because it is used consistently and requires no change in daily habit. The present work demonstrates the ability to accurately capture clinically relevant ECG metrics, pulse transit time based blood pressures, and other parameters across subjects and physiological states using a toilet seat-based cardiovascular monitoring system, enabled through advanced signal processing algorithms and techniques. The algorithms described herein have been designed for use with noisy physiologic signals measured at non-standard locations. A key component of these algorithms is the classification of signal quality, which allows automatic rejection of noisy segments before feature delineation and interval extractions. The present delineation algorithms have been designed to work on poor quality signals while maintaining the highest possible temporal resolution. When validated on standard databases, the custom QRS delineation algorithm has best-in-class sensitivity and precision, while the photoplethysmogram delineation algorithm has best-in-class temporal resolution. Human subject testing on normative and heart failure subjects is used to evaluate the efficacy of the proposed monitoring system and algorithms. Results show that the accuracy of the measured heart rate and blood pressure are well within the limits of AAMI standards. For the first time, a single device is capable of monitoring long-term trends in these parameters while facilitating daily measurements that are taken at rest, prior to the consumption of food and stimulants, and at consistent times each day. This system has the potential to revolutionize in-home cardiovascular monitoring

    Direct measurement of high-lying vibrational repumping transitions for molecular laser cooling

    Full text link
    Molecular laser cooling and trapping requires addressing all spontaneous decays to excited vibrational states that occur at the 104105\gtrsim 10^{-4} - 10^{-5} level, which is accomplished by driving repumping transitions out of these states. However, the transitions must first be identified spectroscopically at high-resolution. A typical approach is to prepare molecules in excited vibrational states via optical cycling and pumping, which requires multiple high-power lasers. Here, we demonstrate a general method to perform this spectroscopy without the need for optical cycling. We produce molecules in excited vibrational states by using optically-driven chemical reactions in a cryogenic buffer gas cell, and implement frequency-modulated absorption to perform direct, sensitive, high-resolution spectroscopy. We demonstrate this technique by measuring the spectrum of the A~2Π1/2(1,0,0)X~2Σ+(3,0,0)\tilde{A}^2\Pi_{1/2}(1,0,0)-\tilde{X}^2\Sigma^+(3,0,0) band in 174^{174}YbOH. We identify the specific vibrational repump transitions needed for photon cycling, and combine our data with previous measurements of the A~2Π1/2(1,0,0)X~2Σ+(0,0,0)\tilde{A}^2\Pi_{1/2}(1,0,0)-\tilde{X}^2\Sigma^+(0,0,0) band to determine all of the relevant spectral constants of the X~2Σ+(3,0,0)\tilde{X}^2\Sigma^+(3,0,0) state. This technique achieves high signal-to-noise, can be further improved to measure increasingly high-lying vibrational states, and is applicable to other molecular species favorable for laser cooling.Comment: 14 pages, 5 figure

    An old problem with a new therapy: gastrointestinal bleeding in ventricular assist device patients and deep overtube-assisted enteroscopy.

    Get PDF
    Conventional algorithms for diagnosis and treatment of gastrointestinal bleeding (GIB) in patients with nonpulsatile ventricular assist devices (VADs) may take days to perform while patients require transfusions. We developed a new algorithm based on deep overtube-assisted enteroscopy (DOAE) to facilitate a rapid diagnosis and treatment. From 2004 to 2012, 84 patients who underwent VAD placement in our institution, were evaluated for episodes of GIB. Our new algorithm for the management of GIB using DOAE was evaluated by dividing the episodes into three groups: group A (traditional management without enteroscopy), group B (traditional management with enteroscopy performed \u3e24 hours after presentation), and group C (new management algorithm with enteroscopy performedpresentation). Gastrointestinal bleeding was observed in 14 (17%) of our study patients for a total of 45 individual episodes of which 28 met our criteria for subanalysis. Forty-one (84%) lesions were confined to the upper gastrointestinal tract with more than 91% of these lesions being arteriovenous malformations. Average number of transfusions in groups A, B, and C were 4.1, 6.3, and 1.3, respectively (p = 0.001). The number of days to treatment was significantly shorter in group C than group B (0.4 vs. 5.3 days, p = 0.0002). Our new algorithm for the management of GIB using DOAE targets the most common locations of bleeding found in this patient population. When performed early, DOAE has the potential to decrease the need for transfusions and allow for an early diagnosis of GIB in VAD recipients

    The PAndAS Field of Streams: stellar structures in the Milky Way halo toward Andromeda and Triangulum

    Full text link
    We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of \Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.Comment: 11 pages, 8 figures, accepted for publication in the ApJ, Figure 3 is the money plo

    Thinking like a consumer: Linking aquatic basal metabolism and consumer dynamics

    Get PDF
    The increasing availability of high-frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs

    Major substructure in the M31 outer halo: the South-West Cloud

    Get PDF
    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo ofM31. The South-West Cloud lies at a projected distance of ̃100 kpc from the centre of M31 and extends for at least ̃

    Lacerta i and cassiopeia III. Two luminous and distant andromeda satellite dwarf galaxies found in the 3π pan-starrs1 survey

    Get PDF
    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r_P1- and i_P1-band imaging data. Both are luminous systems (M_V ~ -12) located at projected distances of 20.3{\deg} and 10.5{\deg} from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756^{+44}_{-28} kpc and 772^{+61}_{-56} kpc, respectively, and corresponding M31-centric distances of 275+/-7 kpc and 144^{+6}_{-4} kpc . The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r_h = 4.2^{+0.4}_{-0.5} arcmin or 912^{+124}_{-93} pc for Lac I; r_h = 6.5^{+1.2}_{-1.0} arcmin or 1456+/-267 pc for Cas III), and consequently low surface brightness (\mu_0 ~ 26.0 mag/arcsec^2), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3{\pi} Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.Comment: 7 pages, 5 figures. Accepted for publication in Ap

    NGC 147, NGC 185 and CassII: a genetic approach to orbital properties, star formation and tidal debris

    Get PDF
    NGC147, NGC185 and CassiopeiaII (CassII) have similar positions in the sky, distances and measured line of sight velocities. This proximity in phase space suggests that these three satellites of M31 form a subgroup within the Local Group. Nevertheless, the differences in their star formation history and interstellar medium, and the recent discovery of a stellar stream in NGC~147, combined with the lack of tidal features in the other two satellites, are all indications of complex and diverse interactions between M31 and these three satellites. We use a genetic algorithm to explore the different orbits that these satellites can have and select six sets of orbits that could best explain the observational features of the NGC147, NGC185 and CassII satellites. The parameters of these orbits are then used as a starting point for N-body simulations. We present models for which NGC147, NGC185 and CassII are a bound group for a total time of at least one Gyr but still undergo different interactions with M31 and as a result NGC147 has a clear stellar stream whereas the other two satellites have no significant tidal features. This result shows that it is possible to find solutions that reproduce the contrasting properties of the satellites and for which NGC147-NGC185-CassII have been gravitationally bound.Comment: Accepted for publication on MNRAS. 12 pages, 9 figure

    Outcomes of obstructed abdominal wall hernia: results from the UK national small bowel obstruction audit

    Get PDF
    Background: Abdominal wall hernia is a common surgical condition. Patients may present in an emergency with bowel obstruction, incarceration or strangulation. Small bowel obstruction (SBO) is a serious surgical condition associated with significant morbidity. The aim of this study was to describe current management and outcomes of patients with obstructed hernia in the UK as identified in the National Audit of Small Bowel Obstruction (NASBO). Methods: NASBO collated data on adults treated for SBO at 131 UK hospitals between January and March 2017. Those with obstruction due to abdominal wall hernia were included in this study. Demographics, co-morbidity, imaging, operative treatment, and in-hospital outcomes were recorded. Modelling for factors associated with mortality and complications was undertaken using Cox proportional hazards and multivariable regression modelling. Results: NASBO included 2341 patients, of whom 415 (17·7 per cent) had SBO due to hernia. Surgery was performed in 312 (75·2 per cent) of the 415 patients; small bowel resection was required in 198 (63·5 per cent) of these operations. Non-operative management was reported in 35 (54 per cent) of 65 patients with a parastomal hernia and in 34 (32·1 per cent) of 106 patients with an incisional hernia. The in-hospital mortality rate was 9·4 per cent (39 of 415), and was highest in patients with a groin hernia (11·1 per cent, 17 of 153). Complications were common, including lower respiratory tract infection in 16·3 per cent of patients with a groin hernia. Increased age was associated with an increased risk of death (hazard ratio 1·05, 95 per cent c.i. 1·01 to 1·10; P = 0·009) and complications (odds ratio 1·05, 95 per cent c.i. 1·02 to 1·09; P = 0·001). Conclusion: NASBO has highlighted poor outcomes for patients with SBO due to hernia, highlighting the need for quality improvement initiatives in this group

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore